Deep Feature Based on Convolutional Auto-Encoder for Compact Semantic Hashing
نویسندگان
چکیده
منابع مشابه
Auto-JacoBin: Auto-encoder Jacobian Binary Hashing
Binary codes can be used to speed up nearest neighbor search tasks in large scale data sets as they are efficient for both storage and retrieval. In this paper, we propose a robust auto-encoder model that preserves the geometric relationships of high-dimensional data sets in Hamming space. This is done by considering a noise-removing function in a region surrounding the manifold where the train...
متن کاملAn efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
3D shape features play a crucial role in graphics applications, such as 3D shape matching, recognition, and retrieval. Various 3D shape descriptors have been developed over the last two decades; however, existing descriptors are handcrafted features that are labor-intensively designed and cannot extract discriminative information for a large set of data. In this paper, we propose a rapid 3D fea...
متن کاملSpatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification
We address in this paper the problem of task-independent video sequence classification. We aim to introduce a generic model which differ from the highly problem-dependent dominant methodology that relies on so-called hand-crafted features. We propose a learning-based model with two main steps: the first one aims to automatically learn spatio-temporal features instead of hand-crafting them. Thes...
متن کاملByte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a nonsequential fashion through the simple task of auto-encoding. We show that nonsequential text generation from a fixed-length representation is not only possibl...
متن کاملSpatial-spectral Classification Based on the Unsupervised Convolutional Sparse Auto-encoder for Hyperspectral Remote Sensing Imagery
Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature informati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1229/1/012032